Singular Fractional Continuous-time and Discrete-time Linear Systems
نویسندگان
چکیده
Abstract: New classes of singular fractional continuous-time and discrete-time linear systems are introduced. Electrical circuits are example of singular fractional continuous-time systems. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and Laplace transformation the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional systems if it contains at least one mesh consisting of branches with only ideal supercondensators and voltage sources or at least one node with branches with supercoils. Using the Weierstrass regular pencil decomposition the solution to the state equation of singular fractional discrete-time linear systems is derived. The considerations are illustrated by numerical examples.
منابع مشابه
Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملReduction and Decomposition of Singular Fractional Discrete-time Linear Systems
Abstract: Reduction of singular fractional systems to standard fractional systems and decomposition of singular fractional discrete-time linear systems into dynamic and static parts are addressed. It is shown that if the pencil of singular fractional linear discrete-time system is regular then the singular system can be reduced to standard one and it can be decomposed into dynamic and static pa...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملPositive fractional continuous-time linear systems with singular pencils
A method for checking the positivity and finding the solution to the positive fractional descriptor continuous-time linear systems with singular pencils is proposed. The method is based on elementary row and column operations of the fractional descriptor systems to equivalent standard systems with some algebraic constraints on state variables and inputs. Necessary and sufficient conditions for ...
متن کامل